日本ゴム協会科学技術奨励賞受賞者

口	年	研究の名称	受賞者名	所属
第1回	2009	種々の官能基を有する新規1,3-ジエン類	177 兄彦	
*** ~	0010	の合成と重合に関する研究		
第2回	2010	該当なし		
第3回	2011	該当なし		
第4回	2012	成形加工技術を利用した高性能高分子	山口 政之	北陸先端科学技術大学院大学
		材料の創製		
第5回	2013	熱可塑性エラストマーを用いたヒトの	土井 幸輝	国立特別支援教育総合研究所
		指先の硬さ感覚知覚特性の評価と		
		その応用		
第6回	2014	該当なし		
第7回	2015	NMR法による加硫ゴムの構造解析に	河原 成元	長岡技術科学大学
		関する研究		
第8回	2016	該当なし		
第9回	2017	非共有結合性高分子ソフト材料の設計	野呂 篤史	名古屋大学大学院
		及び構造・物性		
第10回	2018	スピントラップ法によるゴム材料の	坂井 亙	京都工芸繊維大学
		劣化反応機構の解明		
第11回	2019	天然ゴムラテックスナノ粒子の薬理特性と	岡本 正巳	豊田工業大学
		生体組織工学への展開		
第12回	2020	両親媒性エラストマーによる溶質透過性	渡邉 順司	甲南大学
		を制御した分離膜の創製		
第13回	2021	高分子微粒子の構造制御とその機能化に	南 秀人	神戸大学
		関する研究		
第14回	2022	リチウムポリマー二次電池用の高性能	字野 貴浩	三重大学大学院
	-	高分子固体電解質材料の創製	, , , , , , , , , , , , , , , , , , ,	
第15回	2023	表面形状設計に基づいたゴム材料の	前川 覚	名古屋工業大学
		トライボ特性制御	144, 1 20	
第16回	2024	 基板界面近傍の高分子ナノ構造解析	山本 勝宏	
第17回	2025	. #6 # 11 == 1 - all 14 1# 66 - 45 #6	三輪洋平	
		可能なエラストマー材料の開発	— TIIQ 1	