ブリヂストンソフトマテリアルフロンティア賞受賞者

		7 7 7 7 1 4 7 7 1 1 7 7 7 7 7 7 7 7 7 7			<u>/ / / / / / / / / / / / / / / / / / / </u>
□	年	研究の名称		賞者名	所 属
第1回	2010	フィラー含有ゴムのフィラー3次元分散	陣内	浩司	京都工芸繊維大学
		状態と力学物性の解明			
		広域可変弾性磁気応答性材料の開発	三俣	哲	山形大学
	奨励賞	単一高分子鎖のナノフィッシング	中嶋	健	東京工業大学
		(力学物性)解析			
第2回	2011	高分子ナノ薄膜における物性解析法の	田中	敬二	九州大学
		確立			
	奨励賞	安定ニトリルオキシドを用いた高分子	小山	靖人	東京工業大学
		修飾及び架橋法の開発			
	奨励賞	高分子ネットワークのシミュレーション	増渕	雄一	京都大学
		手法の開発			
第3回	2012	網目構造制御と液晶性付与に基づく	浦山	健治	京都大学
		エラストマーの物性の創出			
	奨励賞	結晶性および液晶性成分を含む高分子	竹下	宏樹	長岡技術科学大学
		多成分系の相構造形成			
	奨励賞	生体環境下で駆動する新規自励振動高分子	原	雄介	(独)産業技術総合研究所
		の創製とケミカルロボテックスへの応用		=. !	
第4回	2013	組み換え可能な共有結合を利用する	大塚	英幸	東京工業大学
		反応性ソフトマテリアルの創製	,	, ,	
	奨励賞	後期遷移金属触媒による異性化重合を	竹内	大介	東京工業大学
		用いたポリオレフィン	1313	, ,,,	
	型	弾性体のすべり摩擦に現れる不安定な	中野		横浜国立大学
		ダイナミクスに関する研究	123	1/~	
第5回	2014	粗視化シミュレーションによるゴム材料中	森田	裕史	(独)産業技術総合研究所
		の相分離構造の解析	7711	147	
	奨励賞	スリップスプリングモデルに基づいた	畝山	多加志	金沢大学
		高分子レオロジーシミュレーション			
		手法の開発			
第6回	2015	該当なし			
		スピン-スピン緩和によるゴムの網目鎖	岩蕗	仁	岡山県工業技術センター
)\"\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	濃度と不均一性の解析	'니 파디	<u> </u>	L 4 L VI TV 1V III C V
	奨励賞	架橋系高分子材料の粗視化分子動	柳生	裕聖	 関東学院大学
	J \	力学シミュレーション技術の研究	1711-114	1H-ZE	1207.54
第7回	2016	ナノ相分離構造を形成するイオン伝導性	富永	洋一	東京農工大学大学院
		エラストマーブレンドによる新規半導電材			
		料の開発		,	
	奨励賞	四面体要素を用いたF-bar aided	大西	有希	東京工業大学大学院
		Edge-based Smoothed Finite Element Method(F-barES-FEM-			
		T4)によるゴム材料の大変形解析			
	奨励賞	トチュウゴム実用化のためのトランス	梶浦	裕之	大阪大学大学院
第8回	2017	ポリイソプレン生合成・蓄積機構の解明 構造明確な高分子ゲルを用いたゴム弾性	酒井	崇匡	東京大学大学院
		理論の実験的検証			
	奨励賞	動的架橋による高分子架橋材料の高強度	眞弓	皓一	東京大学大学院
	运记录	化メカニズムの解明	士.1广	l/A	
	突励資	EHD対流を用いた無機フィラーのネット ワーク構造形成	亦巩	修一	東京工業大学
	<u> </u>	, , 1145/1/124			

第9回	2018	GISAXS-CT法による高分子薄膜材料の ナノ構造の可視化	小川 紘樹	京都大学化学研究所
		ゲル、エラストマーの同時的な高強度化と 小角散乱法を基軸としたナノ構造解析によ る機構解明	大坂 昇	岡山理科大学
		ゴムを基材とする可変なシワによる表面機 能拡張		産業技術総合研究所
第10回		精密重合法を利用した立体規則性ポリ マーブラシの開発		大阪工業大学
		ソフトな高分子材料の階層構造による新し いフォトニックデバイスの創製		東京理科大学
	,	ワユーレ天然ゴムとタンポポ天然ゴムの伸 長結晶化に関する研究	Junkong Preeyanuch	京都工芸繊維大学
第11回		イオン架橋の動的特性制御によるエラスト マーの高機能化		岐阜大学
		フィラー充填ゴムの物性解明に向けた統合的な計算科学的解析法の研究		防衛大学校
	奨励賞	Functionalized natural rubber via graft copolymerization, encapsulation and catalytic hydrogenation: Applications in oil removal from wastewater and thermal properties improvement	Suwadee Kongpara kul	Chulalongkorn University
第12回	2021	架橋剤デザインに基づく機能性ソフトマテリ アルの創出	曽川 洋光	関西大学
	奨励賞	原子間力顕微鏡を用いた変形中のゴム材 料のナノ応力分布の解析	梁 暁斌	東京工業大学
	奨励賞	ゴム材料のハニカム多孔質膜への適用と 応用展開	藪 浩	東北大学
第13回		ゴムの亀裂進展速度ジャンプのメカニズム 解明とタフ化への指針の構築		東京大学大学院
第14回		ゴム添加系新規高性能ポリマーアロイの開 発および破壊メカニズムの解明		山形大学大学院
		結合交換を駆使したサスティナブル架橋樹 脂の開発		名古屋工業大学
	, ,,,,,,	放射線可視化高分子複合材料の開発		京都工芸繊維大学
第15回		新規硫黄ポリマーゴム合成技術の確立と 機能性材料の創製		大阪大学大学院
		実環境で生じるゴムのオゾン劣化メカ ニズムの解明及び劣化評価法の国際 標準化		(一財)化学物質評価研究機構
		重合誘起自己組織化によるゲル化過程の 解明と材料開発	高橋 倫太郎	名古屋大学大学院
第16回	2025	未踏の力学物性を示す高均一ゴムの創製	中川 慎太郎	東京大学
	奨励賞	伸長誘起結晶化を利用した高分子網目・ イオン液体複合材料の強靭化	橋本 慧	岐阜大学